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The recent development of X-ray free-electron laser sources has created new

opportunities for the structural analysis of protein nanocrystals. The extremely

small sizes of the crystals, as well as imperfections of the crystal structure, result

in an interference phenomenon in the diffraction pattern. With decreasing

crystallite size the structural imperfections play a role in the formation of

the diffraction pattern that is comparable in importance to the size effects

and should be taken into account during the data analysis and structure

reconstruction processes. There now exists a need to develop new methods of

protein structure determination that do not depend on the availability of good-

quality crystals and that can treat proteins under conditions close to the active

form. This paper demonstrates an approach that is specifically tailored to

nanocrystalline samples and offers a unique crystallographic solution.

1. Introduction

Growing crystals of membrane proteins to the size suitable for

high-resolution X-ray structure analysis has always been a

major challenge in structural biology (Garcia-Ruiz, 2003;

Malkin & Thorne, 2004; Baker, 2010). Membrane proteins

often tend to form nanoscale crystals (Caffrey, 2003; Fromme

& Spence, 2011) which diffract weakly even at synchrotron

X-ray sources. The need for long exposure times and, as a

result, the delivery of high X-ray doses to record high-

resolution data lead to extensive damage of the sample. The

recent development of extremely bright X-ray free-electron

laser (XFEL) sources has created an opportunity for the

structure analysis of such protein nanocrystals (Chapman et

al., 2011; Boutet et al., 2012; Johansson et al., 2012; Koopmann

et al., 2012). The ‘diffract and destroy’ approach of XFEL

experiments, in which diffraction data are collected from a

stream of protein nanocrystals of varying sizes and shapes in

random orientations, requires, however, the development of

new methods for the structural analysis of proteins.

The size and quality of the protein crystals used in structural

analysis are of particular importance. The implications of

structural imperfections for solving the structure of proteins

by conventional techniques have been identified and analysed

(Faure et al., 1994; Mizuguchi et al., 1994; Eyal et al., 2005;

Welberry, 2004; Welberry et al., 2011). It has been noted that

conventional protein crystallography relies almost entirely on

the analysis of Bragg diffraction data. Scattering between the

Bragg reflections, however, contains information in addition to

that obtainable from the Bragg peaks and should be included

in the structural analysis of proteins.

The situation is much more complicated for nanoscale

crystals. The extremely small size of the crystals, as well as

imperfections of the crystal structure, result in an interference

phenomenon in the diffraction pattern and influence the shape

of the Bragg peaks, as well as the scattering between them

(Vainshtein, 1966; Welberry, 2004; Rafaja et al., 2000, 2004).

The mechanisms that suppress the growth of crystals are

poorly understood. Some studies suggest that the incorpora-

tion of errors leads to a ‘poisoning’ of the surface (Feher &

Kam, 1985; Grant & Saville, 1994). The presence of the lipid or

detergent components of the crystallization solution can limit

the ideal long-range packing in the formation of crystals.

During crystal growth, structural defects and chemical impu-

rities are incorporated until they accumulate to such an extent

on the surface of the crystal that further building of a well

aligned crystalline lattice becomes energetically unfavourable.

If we consider the crystal as a cube of size L ¼ na, where a is

the unit-cell parameter and n is the number of the unit cells

along the a direction, then the ratio of the number of unit cells

on the crystal surface, NS, to the total number of unit cells,

NV ¼ n3, can be estimated to be NS=NV ¼ 1� ½1� 2ða=LÞ�3.

Fig. 1 shows that the fraction of unit cells at the surface of the

crystal increases rapidly as the crystal size decreases. As

examples, 400 nm-size crystals with 100, 200 and 300 Å unit

cells contain, respectively, approximately 14, 27 and 39%

surface unit cells. It is clear that the effects due to disorder of a

large number of surface unit cells cannot be neglected in the

structural analysis of the nanoscale crystals. Moreover, struc-

tural imperfections play a role in the formation of the

diffraction patterns that is comparable in importance with the

size effects if the crystallite size is reduced. Consequently, the
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extraction of the integrated intensities of Bragg reflections

from the diffraction pattern is a major problem in protein

nanocrystallography.

A new method for the structural analysis of protein nano-

crystals has recently been demonstrated (Kirian et al., 2010,

2011; Spence et al., 2011). The total intensity of X-rays scat-

tered from the nanocrystals can be described as a simple

product of two factors: the form factor of the crystal (CFF)

and the molecular form factor (MFF) of the protein.

Assuming that the MFF is identical for all crystals but the CFF

depends on the size and shape of a crystal, one can derive the

electron density of the protein molecule by properly averaging

the CFF over all crystals and using iterative phasing methods.

The intensities of reflections are integrated within the Wigner–

Seitz cell around each Bragg peak, which provides sufficient

information for the direct phasing of the MFF.

The method further assumes that crystal size effects domi-

nate in the formation of the diffraction pattern of the protein

nanocrystals. It is assumed that the density of structural

defects in protein nanocrystals is small and that such effects

can, therefore, be neglected or corrected by the static Debye–

Waller factor (Kirian et al., 2010). Our analysis suggests,

however, that structural imperfections may play an important

role in the formation of the diffraction pattern of nanocrystals.

Moreover, a reason why crystals may not grow beyond micron

size is that they are not ideal, suggesting strongly that the

structural imperfections should be included in the structural

analysis.

Here we present an approach in which the diffraction

pattern of the protein nanocrystals is regarded as a continuous

function of the scattering vector, rather than as a discrete set

of Bragg reflections. It has been suggested that the diffraction

data that are available using XFEL sources offer the possi-

bility of direct phasing of the continuous scattering from single

proteins or protein nanocrystals of varying sizes and orienta-

tions (Fung et al., 2009; Kirian et al., 2010). With this in mind,

one can build a continuous three-dimensional diffraction

pattern using a sufficient quantity of two-dimensional

diffraction snapshots, collected from a stream of randomly

oriented nanocrystals. Coherent diffractive imaging (CDI)

methods, which have generally been developed for the

analysis of non-periodic finite objects (Fienup, 1982; Miao et

al., 1998; Spence, 2004; Chapman et al., 2006; Quiney, 2010) are

then applied to reconstruct the electron density of the protein

molecule. We will demonstrate that the variation of crystal

shapes and structural imperfections can be incorporated into

the reconstruction process as an additional source of partial

coherence of the X-rays scattered from the sample. It has

recently been shown that the explicit incorporation of models

of partial coherence into the solution of the phase problem

significantly improves the quality of reconstruction in

diffractive imaging applications (Whitehead et al., 2009; Chen

et al., 2009; Abbey et al., 2011; Quiney & Nugent, 2011).

Table 1 summarizes notations and symbols frequently used

in this paper.

2. Initial conditions and validity of the method

Diffraction data collected using an XFEL source consist of

two-dimensional diffraction patterns (snapshots) of randomly

oriented particles (nanocrystals). Each snapshot represents

the diffraction pattern from a single particle of finite size and a

unique orientation, but each particle possesses its own size,

orientation and degree of structural disorder. The structure of

a protein molecule is determined from the three-dimensional

diffracted intensity distribution by applying the iterative phase

retrieval technique, which should be modified to incorporate a

priori information pertaining to the experimental conditions.

Several critical questions, which influence the validity of our

method, are discussed below.
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Figure 1
NS=NV ratio as a function of crystal size for different unit-cell parameters:
(1) a = 10.0 nm, (2) a = 20.0 nm and (3) a = 30.0 nm.

Table 1
Notations and symbols.

� Wavelength
q Scattering vector
q ¼ jqj q ¼ 2�S, where S ¼ 2 sinð�Þ=�
r0, r, R, u, �r Vectors which define the actual and average positions of

atoms, the origin of the molecular cluster, the ideal position
of the atom in the molecular cluster, and the displacement
of atoms from the average positions, respectively

�CðrÞ, �MðrÞ, Electron-density distribution in the crystal and in the unit cell,
respectively

OðrÞ Lattice translation function
SðrÞ Shape function, defines the shape of the crystal
�ðqÞ Molecular form factor (MFF); scattering from the cluster of

protein molecules, located in the one unit cell
TðqÞ Translation factor. Defines structural information, specified

by the ideal nuclear positions of atoms (molecules)
�ðqÞ, ~��ðqÞ Interference functions produced by the ideal and disordered

lattice of molecular clusters, respectively
gðqÞ The weighting factor, which describes the degree of coherence

of two molecular clusters
AðqÞ Two-dimensional matrix, elements of which describe the

degree of coherence of two waves, scattered from two
molecular clusters

hWðqÞi An average crystal form factor (CFF)
�2

m The mean-square displacement (MSD) of the mth neigh-
bouring molecular cluster

IðqÞ or ImðqÞ, Intensity of X-rays scattered from the nanocrystal
ITðqÞ, IexpðqÞ Calculated and measured (simulated) integrated intensities of

X-rays scattered from a set of nanocrystals of different
shapes, orientations, structural disorders, respectively



2.1. Data acquisition process and the particle orientation
problem

In recent years, considerable attention has been given to the

problem of the analysis of new types of data obtained using

XFEL sources (Shneerson et al., 2008; Loh & Elser, 2009;

Fung et al., 2009; Schwander et al., 2010; Kirian et al., 2010;

Spence et al., 2011; Tokuhisa et al., 2012). It has been shown

that the orientations of individual particles or even single

molecules can be determined from the XFEL diffraction data

(Fung et al., 2009; Kirian et al., 2010). In the case of nano-

crystals, this process is more straightforward, since it is based

on indexing very strong Bragg reflections. It has been shown

that the existing auto-indexing programs are capable of

determining unit-cell parameters and orientations with high

accuracy (Kirian et al., 2010).

The scope of this article is to analyse the influence of

structural imperfections on the three-dimensional diffraction

pattern obtained from a set of randomly oriented, structurally

imperfect nanocrystals of different shapes. In our analysis we

follow earlier work (Kirian et al., 2010) which describes

techniques for merging two-dimensional snapshots into a

three-dimensional intensity distribution volume.

2.2. Total number of photons and the signal-to-noise ratio

The successful application of any iterative algorithm

depends on the availability of an accurate model for the data

acquisition process. A common deviation from the ideal

conditions arises because of the impact of noise or low photon

counts on the diffraction data. Recent work has investigated

the impact of these factors on the quality of reconstruction

and explored the point at which the iterative scheme fails to

converge to a correct solution (Williams et al., 2007). It has

been shown that the critical number of scattered photons for

the successful reconstruction of a two-dimensional projection

is Nc ’ 105 and the signal-to-noise ratio is SNRc ’ 290, where

SNR is defined by

SNR ¼

PN
k¼1 IkPN

k¼1 Ikð Þ
1=2
þ Pk þ Bk

: ð1Þ

In equation (1), Ik is the number of photons collected in pixel

k, Pk is the signal due to photons scattered into the detector by

alien sources, and Bk is the bias level arising from the detector

and electronics. We will base our simulations on these critical

parameters.

2.3. Conditions critical for the CDI approach

Several factors have a strong influence on the setup of a

CDI experiment.

(a) The diffraction pattern should satisfy the oversampling

criterion

total number of sample points in one dimension

portion occupied by object
� 2 ð2Þ

for each dimension (Bates, 1982; Quiney, 2010).

(b) The far-field condition, d2=ð�ZÞ � 1, where d is the size

of the object (nanocrystal), � is the wavelength of the X-ray

source and Z is the object–detector distance.

(c) The discrete Fourier transform relation for the sampling

intervals, �S and �D, in the object and detector planes,

respectively,

�S ¼
�Z

N�D

; ð3Þ

where N is the number of pixels along one side of the detector.

Meanwhile, the crystallographic resolution is defined as

dmin ¼ �=2 sin �B
max, where �B

max is the maximum Bragg angle

that can be measured (see Fig. 2a), or

dmin ¼
�

2 sin 1
2 atan N�D=2Zð Þ
� � : ð4Þ

As one can see from equations (3) and (4), dmin ’ 2�S.

(d) Since our approach is based on the analysis of the

continuous three-dimensional diffraction pattern, correct

sampling of intensities between the Bragg reflections is also

important. The number of points between the Bragg reflec-

tions can be defined as (see Fig. 2a)

m ¼ N
tan 2�1ð Þ

tan 2�maxð Þ
; ð5Þ

where �1 ¼ asinð�=2aÞ. Consider the crystal as a cube of size

L ¼ na, where a is the unit-cell parameter and n is the number

of unit cells along the a direction. Consequently, the number

of fringes between the (h00) Bragg reflections is equal to

p ¼ n� 2. Our analysis shows that the critical number of

measured points, mC, is given by mC ¼ 2pþ 1, corresponding

to two measured points for each subsidiary fringe.

Taking all of the above requirements into consideration, the

parameters chosen for our simulations are summarized in

Table 2.
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Figure 2
(a) Schematic of the CDI experiment. (b) Vector representation of the
position of the atom in the crystal lattice.



3. Scattering from the partially disordered protein
nanocrystal

In this section we consider the idealized case of diffraction

from a single nanocrystal of finite size. Although the influence

of structural imperfection on the diffraction pattern of protein

crystals has been analysed previously (Mizuguchi et al., 1994;

Rafaja et al., 2000, 2004; Welberry, 2004; Welberry et al., 2011),

it is useful to summarize the main features in order to provide

necessary information for the analysis that follows.

We consider a cluster of proteins located in the unit cell as

the constituent elements of the crystal structure. We call such a

group of proteins a ‘molecular cluster’. In other words, each

node of the three-dimensional periodic lattice corresponds to

the ideal position of the molecular cluster. We further assume

that the molecular cluster consists of identical protein mole-

cules, replicated within the unit cell according to the symmetry

of the crystal.

We first consider the intensity of X-rays scattered from an

ideal crystal. The amplitude of X-rays scattered by a nano-

crystal is represented in the form (see Fig. 2b)

� qð Þ ¼
P

l

P
k

fk qð Þ exp iq � rklð Þ exp iq � Rlð Þ; ð6Þ

where Rl is the position of the lth unit cell in the crystal or,

according to our definitions, the position of the lth molecular

cluster in the crystal. The position of the kth atom in the lth

molecular cluster is denoted rkl, fk qð Þ is the atomic scattering

vector of the kth atom, q is the scattering vector, q ¼ q
�� �� and

summations are performed over all atoms, labelled k, and all

unit cells, labelled l. Scattering from the molecular cluster is

determined by the so-called MFF defined by

�l qð Þ ¼
P

k

fk qð Þ exp iq � rklð Þ: ð7Þ

Suppose all molecular clusters in all unit cells are identical

and, therefore, �l qð Þ ¼ � qð Þ for all clusters in the crystal.

Using � to signify the complex conjugate, the intensity of

X-rays scattered from an ideal crystal is obtained through the

relation I qð Þ / � qð Þ�� qð Þ, so that

I qð Þ / � qð Þ
�� ��2 P

j;l

exp iq � Rj

� �
exp �iq � Rlð Þ; ð8Þ

or

I qð Þ / � qð Þ
�� ��2� qð Þ: ð9Þ

In equation (9), � qð Þ represents the interference function

produced by the three-dimensional periodic lattice of mole-

cular clusters. For large crystals, the scattered intensity is

negligible everywhere except near the positions of the Bragg

reflections.

To incorporate structural imperfections into the analysis of

the diffraction data we define the positions of atoms as

r0kl ¼ rk þ�rkl, where rk is the average position of the kth

atom in the molecular cluster, which is identical for all clusters,

and �rkl denotes the displacement of the kth atom from the

average position in the lth molecular cluster (Fig. 2b).

Consequently, the intensity of X-rays scattered from the

partially disordered nanocrystal can be rewritten in the

following form [see Vainshtein (1966) or Rafaja et al. (2000)

for more details]:

I qð Þ / � qð Þ
�� ��2 ~�� qð Þ; ð10aÞ

where

~�� qð Þ ¼
P
j;l

exp iq � Rj

� �
gjl qð Þ exp �iq � Rlð Þ: ð10bÞ

In equation (10b), gjl qð Þ is the weighting factor which

describes the degree of the coherence of two molecular clus-

ters located at positions Rj and Rl. It is equal to unity for an

ideal crystal, and equal to zero for the totally incoherent

formation of molecular clusters. It is defined by

gjl qð Þ ¼ exp iq � �rkj ��ril

� �� �� �
; ð11Þ

where angle brackets denote an average over all molecular

clusters of the crystal. As one can see from equation (10b), the

behaviour of the interference function, ~�� qð Þ, is governed by

the form of gjl qð Þ. The gjl qð Þ factors describe the structural

imperfections, such as the loss of the coherence of molecular

clusters due to their misorientations (Rafaja et al., 2004),

gjl qð Þ ¼ min
1� 12q2D2

mð Þ
�1

qQ qð ÞDm

; 1

" #
; ð12aÞ

or the displacement of molecular clusters from their ideal

positions (Rafaja et al., 2000),

gjl qð Þ ¼ exp �2�2q2�2
m

� �
: ð12bÞ

Here, m ¼ j� l
�� ��, Dm is the distance between two molecular

clusters located at positions Rj and Rl, and Q qð Þ denotes the

‘texture’ or ‘preferred orientation’ function which char-

acterizes the angular distribution of the molecular clusters.

The mean-square displacement (MSD) of the mth neigh-

bouring molecular cluster is denoted �2
m, and can be defined

as �2
m ¼ m�2

1 (Vainshtein, 1966) where �2
1 is the MSD of the

nearest-neighbour molecular clusters.

According to equation (10b), the presence of structural

imperfections in protein nanocrystals leads to broadening of

diffraction peaks in addition to the size effects. Fig. 3 shows

the interference function calculated for the ideal and the

partially disordered protein nanocrystal. In our analysis, we

assumed that �1 ¼ �1a;�1b;�1cð Þ, �1a ¼ �1da, �1b ¼ �1db

and �1c ¼ �1dc, where da, db and dc are the interplanar

distances along the crystallographic directions a, b and c,

respectively, and �1, �2 and �3 are variable parameters. As one
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Table 2
Experimental parameters used in simulations.

Dimensions of the detector 1800 	 1800
Pixel sizes at the detector plane, �D 110 mm
Wavelength, � 1 Å
Total number of scattered photons for each two-dimensional

projection of the three-dimensional diffraction pattern
105

Crystal size 
200 nm
Crystallographic resolution 
4.1 Å



can see from Fig. 3(b), the broadening effect is more

pronounced at high-q regions of the diffraction pattern.

Detailed analysis of the interference function, ~�� qð Þ, however,

shows that the appearance of diffraction fringes between the

Bragg reflections is extremely sensitive to the gjl qð Þ function,

even at the low-q regions (Fig. 4).

In our analysis, we have assumed that the molecular clusters

consist of identical protein molecules. Protein crystals are,

however, often grown as complexes of two or more proteins

which introduces so-called conformational disorder. Confor-

mational disorder does not affect the shape of Bragg peaks,

but reduces the intensity of reflections by the additional

Debye–Waller factor and also leads to continuous diffuse

scattering in inter-Bragg regions (Vainshtein, 1966; Welberry,

2004).

The interference phenomenon which can be observed in the

diffraction patterns of nanocrystals depends on contributions

to gjl qð Þ (Vainshtein, 1966; Welberry, 2004). As follows from

the analysis, the structural imperfections of nanocrystals lead

to broadening of the Bragg reflections, to decay of their peak

intensities and to modification of the scattering between the

Bragg reflections. In conventional protein crystallography,

critical assumptions are usually made: the density of structural

defects is small and displacements of atoms are mutually

uncorrelated. In this case, the static Debye–Waller factor can

be used to account for the influence of structural imperfec-

tions on the diffraction pattern. The intensity of X-rays scat-

tered from the partially disordered nanocrystal is transformed

into the form I qð Þ / � qð Þ
�� ��2� qð Þ exp �Bq2ð Þ, where B is the

Wilson factor (Giacovazzo, 2011). Generally, however, gjl qð Þ is

a non-symmetrical, continuous function that exists in the

entire range of q and not just around the Bragg reflections.

The averaging of intensities only around the positions of the

Bragg reflections ignores most of the effects of the structural

imperfections, leading to the loss of important structural

information. From this point of view, extracting the integrated

intensities of the Bragg reflections from the diffraction pattern

is a formidable task.

To overcome this problem one should consider the

diffraction pattern from the partially disordered protein

nanocrystals not as a discrete set of intensities of the Bragg

reflections, but as a continuous function of q. In this case, the

approach that is now known as the CDI technique can be

applied for structure analysis of the protein nanocrystals.

The ability of the CDI approach to reconstruct the object

comprised of a small number of periodic elements has recently

been demonstrated (Chen et al., 2009). The CDI reconstruc-

tion technique is based on Fienup’s extensions of the algo-

rithm first proposed by Gerchberg & Saxton (1972) and

Fienup (1982). The Gerchberg–Saxton–Fienup (GSF) algo-

rithm propagates a numerical representation of a scalar

wavefield between ‘object’ and ‘detector’ planes using

instances of the Fourier transformation. The wavefield in these

fixed planes is constrained by the application of a priori

information, and the iteration between planes is continued

until self-consistency is achieved (Fienup, 1982). The contin-

uous diffractive field produced by the nanocrystals contains all

the information necessary for structure analysis and, unlike

conventional crystallography, provides a unique solution in a

single set of data (Bates, 1982). According to the analysis

presented in this section, gjl qð Þ may be regarded as describing

the degree of coherence of the X-rays scattered from two

molecular clusters, located at positions Rj and Rl. The struc-

tural imperfections in a protein nanocrystal can, therefore, be

considered as a source of partially coherent X-rays, scattered

from the ensemble of molecular clusters arranged in a three-

dimensional periodic lattice. Recent developments in CDI

show that the coherent properties (spatial and temporal) of

X-ray sources can be incorporated directly into the CDI

reconstruction process (Whitehead et al., 2009; Chen et al.,

2009; Abbey et al., 2011). Moreover, the radiation damage

caused by the interaction of X-rays of the XFEL source with

the protein molecules can also be incorporated into the

structural analysis by introducing models of partial coherence

(Quiney & Nugent, 2011); we have utilized the same general
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Figure 4
The variation of the interference function, ~��ðqÞ, between (500) and (600)
Bragg reflections for the hexagonal unit cell, a = b = 281, c = 165 Å. The
gjlðqÞ is calculated using equation (12b), assuming that �1 ¼ �d100, where
d100 is the interplanar distance along the (100) direction of the crystal
lattice. (1) � = 0.0, (2) � = 0.002, (3) � = 0.005, (4) � = 0.008.

Figure 3
The (hk0) plane of the interference function calculated for (a) the ideal
nanocrystal and (b) for the partially disordered nanocrystal. The gjlðqÞ is
calculated using equation (12b), assuming that �1 ¼ �d100, where d100 is
the interplanar distance along the (100) direction of the crystal lattice and
� = 0.005.



approach in our analysis. Furthermore, � qð Þ and, therefore,

the electron density distributed in the unit cell of the protein

nanocrystal can be reconstructed from measured intensities

I qð Þ by introducing models of gjl qð Þ into the algorithm.

4. Total intensity of X-rays scattered from protein
nanocrystals of different shapes

In this section, we assume that sufficient two-dimensional

diffraction patterns of randomly oriented particles have been

collected to build a three-dimensional intensity distribution

volume. Each snapshot represents the diffraction pattern from

a single particle of finite size and a unique orientation, but

each particle has its own size, orientation and degree of

disorder. The orientation of each nanocrystal is determined

from the two-dimensional diffraction pattern by the indexing

approach presented in Kirian et al. (2010). The diffraction

patterns for each orientation are accumulated to achieve the

critical number of scattering photons, Nc ’ 105, from which

the three-dimensional diffraction pattern is ultimately

constructed. We also assume that all of the criteria described

in x2 are satisfied.

We consider diffraction from the set of M distinct nano-

crystals of different shapes S ¼ fS1ðrÞ; . . . ; SMðrÞg, where Sm rð Þ

defines the shape of the mth nanocrystal. We assume that each

nanocrystal fits a box, �, with dimensions La 	 Lb 	 Lc,

formed by the ideal unit cell of the nanocrystal translated

periodically along the lattice vectors a, b and c, shown in Fig. 5.

The position of the jth atom of the mth crystal in the � lattice

is defined as r0jm ¼ rj þ�rjm, or r0jm ¼ Rl þ ukl þ�rjm, where

rj is the average position of the jth atom in the crystal, Rl is the

origin of the lth unit cell (molecular cluster) in �, ukl is the

ideal position of the kth atom in the lth molecular cluster and

�rjm denotes the displacement of the jth atom from the

average position in the mth crystal (Fig. 2b). Each unit cell of

� is assigned an occupation factor, pm rj

� �
, which is equal to

unity if rj 2 Sm rð Þ and zero otherwise.

The intensity of X-rays scattered from the mth crystal can

be written in the following general form (see also x3):

Im q; tð Þ / I0 tð Þ
P
j;k

f m
j q; tð Þf m

k q; tð Þpm rj

� �
pm rkð ÞTj qð ÞT�k qð Þgm

jk qð Þ:

ð13Þ

Here, the summation is performed over all atoms located

in �, I0ðtÞ is the time-dependent intensity of the incident

pulse, f m
j ðq; tÞ is the elastic scattering factor of the jth

atom in the mth crystal, TjðqÞ ¼ expðiq � rjÞ and gm
jkðqÞ ¼

exp½iq � ð�rjm ��rkmÞ�.

The integrated intensity, ITðqÞ, of X-rays scattered from a

set of nanocrystals of different shapes can then be defined as

IT qð Þ /
P
j;k

Tj qð ÞAjk qð ÞT�k qð Þ; ð14Þ

where

Ajk qð Þ ¼ Io tð Þf m
j q; tð Þf m

k q; tð Þpm rj

� �
pm rkð Þg

m
j;k qð Þ

� �
: ð15Þ

Angle brackets denote an average over time, all crystal shapes

and all structural distortions. As one can see from equations

(14) and (15), all of the structural information, specified by the

ideal nuclear positions of atoms, is contained in TjðqÞ, while all

structural imperfections are combined within AjkðqÞ. One may

determine one of these quantities from the measurements of

ITðqÞ if the other is known. The goal of our presentation is the

structural analysis of proteins to determine TjðqÞ. Since AjkðqÞ

is a continuous function of q, one can also characterize the

structural imperfections from measured intensities, ITðqÞ, in

crystals with known ideal (average) structure. We consider

potential applications in the following examples.

4.1. Scattering from ideal crystals of different shapes

We assume that the density of structural defects is small

and, therefore, the influence of such defects on the diffraction

pattern can be neglected or taken into account by the static

Debye–Waller factor, expð�Bq2Þ. The total intensity, ITðqÞ,

can be rewritten in the form

IT qð Þ / � qð Þ
�� ��2 P

j;k

Tj qð ÞAjk qð ÞT�k qð Þ ð16aÞ

and

Ajk qð Þ ¼ I0 tð Þpm rj

� �
pm rkð Þ

� �
; ð16bÞ

where TjðqÞ ¼ expðiq � RjÞ. Equation (16a) can also be

represented in the form

IT qð Þ ¼ �0 qð Þ
�� ��2 S qð Þ

� �
; ð17Þ

where �0ðqÞ ¼�ðqÞ expð�Bq2Þ and hSðqÞi is the average CFF.

Since the CFF is the same in the neighbourhood of every

Bragg reflection for a given crystal, equation (17) can be

transformed into the same form discussed in Spence et al.

(2011) and Kirian et al. (2010).

4.2. Radiation damage or substitution disorder effects

The integrated intensity, ITðqÞ, can be rewritten in the form

IT qð Þ /
P
j;k

pjpkTj qð ÞAjk qð ÞT�k qð Þ ð18aÞ

and
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Figure 5
Schematic of the crystal structure representation; the (ab) plane of the �
box is shown.



Ajk qð Þ ¼ Io tð Þfj q; tð Þfk q; tð Þ
� �

; ð18bÞ

where TjðqÞ ¼ expðiq � rjÞ. It is readily shown that equation

(18a) can be transformed into the same form discussed in

Quiney & Nugent (2011).

4.3. Structural disorder

This case is the target of our analysis. We consider only

sources of structural disorder, such as mutual displacement or

misorientations of molecular clusters. The current analysis

does not include conformational disorders, though these are

readily incorporated into the analysis. The integrated intensity,

ITðqÞ, is represented in the form

IT qð Þ /
P
j;k

Tj qð ÞAjk qð ÞT�k qð Þ ð19aÞ

and

Ajk qð Þ ¼ pm Rj

� �
pm Rkð Þ exp iq � �rjm ��rkm

� �� �� �
; ð19bÞ

where TjðqÞ ¼ �ðqÞ expðiq � RjÞ. The elements of the matrix

AðqÞ describe the degree of coherence of two waves, scattered

from two molecular clusters separated by the distance

jRj � Rkj. Consequently, the structure of the protein crystal

can be derived from ITðqÞ by introducing models of coherency,

AjkðqÞ.

According to the coherent mode formulation of coherence

theory, proposed by Wolf (1982), the relationship between

the coherent properties of molecular clusters and a far-field

scattered intensity can be represented in terms of a modal

expansion of the form

IT qð Þ ¼
PM
k¼1

�k�k qð Þ��k qð Þ; ð20Þ

where �k are real, non-negative numbers representing the

occupancy of the mode �kðqÞ and M is the number of such

modes. The modes are themselves mutually incoherent. It has

recently been demonstrated (Whitehead et al., 2009; Chen et

al., 2009; Quiney & Nugent, 2011; Abbey et al., 2011) that the

incorporation of models of partial coherence into CDI

analysis significantly improves the quality of the reconstruc-

tion; we have utilized the same approach in our analysis here.

We consider only one type of structural imperfection, namely

a type of distortion of the crystal lattice caused by correlated

displacements of the molecular clusters from their ideal

positions [equation (12b)]. We used this type of distortion as

an illustrative example and as a tool to explore the generic

properties of the approach.

5. Simulations

The protein molecule photosystem I (Jordan et al., 2001) was

used as a target for the structure reconstruction. We simulated

both ideal and disordered nanocrystals (
200 nm linear size)

of photosystem I containing 7 	 7 	 12 unit cells. Each unit

cell consists of six protein molecules (the molecular cluster)

according to the space group P63.

The electron-density distribution of the crystal, �CðrÞ, can

be represented by the convolution

�C rð Þ ¼ �M rð Þ �O rð Þ; ð21Þ

where �MðrÞ is the electron density of the molecular cluster

and OðrÞ is the lattice function defined by Vainshtein (1966),

O rð Þ ¼ L� r� R0ð Þ þ
PL
l¼1

pl� r� Rlð Þ: ð22Þ

The summation is performed over all L lattice translations

(unit cells) of the crystal. In equation (22), Rl denotes the lth

translational position of the three-dimensional lattice, pl is the

occupancy factor and � is the Dirac delta function; the occu-

pancy factor equals unity when the position is fully occupied

by the molecular cluster and zero if the position is vacant.

Starting with the central position, R0 ¼ ð0; 0; 0Þ, all subse-

quent translational positions, Rl, of the molecular cluster are

Rl ¼ Rl�1 þHþ�H, where H ¼ ða; b; cÞ is the elementary

translation vector and �H denotes the displacement of the

molecular cluster from the ideal position; for the ideal crystal

�H ¼ ð0; 0; 0Þ. To simulate the partially disordered nano-

crystal, a set of 100 random vectors, f�Hg, is generated for

each position Rl using a Gaussian distribution with a mean of

Rl ¼ Rl�1 þH, from which one displacement vector �H is

randomly selected. The number of unit cells, Lm, for each

crystal was randomly generated, with a Gaussian distribution

corresponding to a mean length of 200 nm and with a standard

deviation of 10%. The three-dimensional intensity distribution

volume was calculated as follows; the MFF function, �ðqÞ, was

calculated using

� qð Þ ¼
PN
j¼1

fj qð Þ
PK
k¼1

exp i2� q � ÛUkuj

� �� �	 

; ð23Þ

where N is the number of atoms in the protein molecule, K is

the number of symmetry operations, fjðqÞ is the atomic scat-

tering factor of the jth atom, uj is the position of the jth

atom and ÛUk is the kth symmetry operation matrix. The

interference function for each crystal, �mðqÞ, was calculated

for each nanocrystal using

�m qð Þ ¼ F̂F Om rð Þ �Om rð Þ
� �

; ð24Þ

where � denotes the convolution operator. The intensity

scattered from the crystal was calculated using

Im qð Þ ¼ F̂F �C rð Þ
� ���� ���2 ¼ F̂F �M rð Þ

� �
F̂F Om rð Þ
� ���� ���2

¼ � qð Þ
�� ��2�m qð Þ: ð25Þ

Finally, the total intensity was calculated as

Iexp qð Þ ¼
PM
n¼1

In qð Þ; ð26Þ

where M is the total number of three-dimensional diffraction

patterns simulated. The two-dimensional cross section of the

three-dimensional intensity distribution, IexpðqÞ, for the ideal

and imperfect photosystem I nanocrystals is shown in Fig. 6.
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6. Reconstruction

Elements of the AðqÞ matrix, presented in equation (19b), can

be rewritten in the equivalent form

Ajk qð Þ ¼
1

M

XM

m¼1

Z1
�1

Pm
jk Rð ÞG �jk

� �
exp iq�m

jk

� �
d�m

jk; ð27Þ

where �m
jk ¼ �rjm ��rkm, Gð�jkÞ is the distribution function

which describes the lattice distortion and Pm
jkðRÞ ¼

pmðRjÞp
mðRkÞ is the crystal form distribution function, which is

the self-convolution of the crystal shape function (x4).

Consequently, equation (27) can be

written in the form (Vainshtein, 1966)

Ajk qð Þ ¼ W qð Þ
� �

� gjk qð Þ; ð28Þ

where hWðqÞi ¼ F̂F½hPðRÞi� is the

average CFF, F̂F denotes the Fourier

transform operator and gjkðqÞ is defined

by equation (12b). The mean-square

displacement is defined in x3.

In order to acquire information about

the average shape and dimensions of

the crystal, we first applied the

conventional CDI algorithm to recon-

struct its image assuming that gjkðqÞ ¼ 1

for all j and k. Fig. 7 shows the recon-

structed images in the (001) planes for both the ideal (Fig. 7a)

and disordered protein nanocrystals (Figs. 7b, 7c), with a

resolution of 12 Å. Since the conventional CDI algorithm

does not take into account the imperfections of the crystal

structure, an excellent quality image of the ideal crystal

is reconstructed, while the image of the imperfect crystal

shows a pronounced blurring effect. Nevertheless, the shape

and the dimensions of the crystal projection can be correctly

identified from Figs. 7(b), 7(c). Considering the diversity of

individual nanocrystals, however, the average form of the

nanocrystal defines the hWðqÞi function for further CDI

reconstructions.

We also generated two data sets of integrated intensities

of the Bragg reflections for ideal, IiðhklÞ, and disordered,

IdðhklÞ, protein nanocrystals, using the intensity integration

approach presented in Kirian et al. (2010), to analyse them

using conventional crystallography. The crystal disorder

was modelled by the static Debye–Waller factor,

exp½�Bðsin �=�Þ2�, where B = 40.0 Å2. We first conducted

a molecular replacement with PHASER (McCoy et al.,

2007) using the published photosystem I structure (Protein

Data Bank ID 1jb0) as an initial model against the

generated structure factors, FiðhklÞ ¼ ½IiðhklÞ�1=2 and FdðhklÞ =

½IdðhklÞ�1=2, respectively.

In both cases, the analysis showed the correct position and

orientation of the photosystem I molecule in the unit cell. This

is the expected result, since the position, orientation and shape

of the molecule can be determined solely from the low-q data

because the high-q data are most sensitive to the structural

imperfections. Subsequent constrained structural refinement

with REFMAC (Murshudov et al., 1997) failed, however, with

extremely high thermal parameters in the range of 40–120 Å2

for most of the atoms and over 100% R/Rfree factors for the

disordered data set (Table 3). This is also in good agreement

with the results obtained using the conventional CDI algo-

rithm.

Finally, we reconstructed the electron density of the mole-

cular clusters by incorporating models of structural imper-

fections into the reconstruction process. The common ‘recipe’

adopted for the CDI reconstruction using the partially

coherent models has been described in several publications
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Figure 6
Simulated diffraction patterns of the photosystem I nanocrystal [(ab) plane]: (a) diffraction from
the ideal crystal; (b) diffraction from the set of disordered nanocrystals. (c) A magnified view of a
segment from the diffraction patterns of the ideal (left) and the disordered (right) nanocrystals.

Figure 7
The (001) projection of the electron density for the ideal (a) and the
disordered (b), (c) photosystem I protein crystals, reconstructed at a
resolution of 12 Å without incorporation of the partial coherency model
into the reconstruction process.



(Whitehead et al., 2009; Chen et al., 2009; Abbey et al., 2011;

Quiney & Nugent, 2011). For structure analysis of the partially

disordered protein nanocrystals we devised the following

iterative procedure:

(i) The reconstruction process starts from the initial guess of

the uniform distribution of the electron density in the unit cell,

�MðrÞ ¼ Z=V, where V is the unit-cell volume and Z is the

total number of electrons in the unit cell. We use the unit cell

of the crystal as the initial support function, SuðrÞ. Later,

during the reconstruction process, the low-resolution envelope

of the molecular cluster is used as a support.

(ii) The MFF function is calculated using �ðqÞ ¼ F̂F½ �MðrÞ�.

(iii) The set of complex functions TjðqÞ is calculated using

TjðqÞ ¼ �ðqÞ expðiq � RjÞ for all Rj 2 �, and the AðqÞmatrix is

calculated using equations (28) and (12b).

(iv) The integrated intensity, ITðqÞ, is calculated using

equation (19a).

(v) Parameters �1;...;3 are optimized by minimizing the error

cost function, E ¼
P
½IexpðqÞ � ITðqÞ�

2, using the steepest

descent method, where IexpðqÞ is the measured (simulated)

intensity. We used �1 = �2 = 0.002 and �3 = 0.001 as the initial

values for �1;...;3.

(vi) The modulus constraint is imposed using T 0j ðqÞ ¼

TjðqÞ½IexpðqÞ�
1=2=½ITðqÞ�

1=2.

(vii) With the amplitude updated, the complex functions,

T 0j¼0ðqÞ, are transformed into real space and the support

function SuðrÞ is applied to obtain the updated electron

density of the molecular cluster distributed in the unit cell of

the crystal, �MðrÞ ¼ F̂F�1½Tj¼0ðqÞ�SuðrÞ.

Steps (ii)–(vii) are repeated and the progress of the

reconstruction monitored using an error metric defined

as

R ¼

P
Iexp qð Þ � KIT qð Þ
� �2

P
Iexp qð Þ
� �2 ; ð29Þ

where K is the scale factor.

Fig. 8 shows the electron density of the photosystem I

molecular clusters reconstructed at a resolution of 4.1 Å.

The resulting images clearly show structural details,

including the envelopes of photosystem I protein molecules

and transmembrane �-helices. As one can see from Fig. 8,

the method enables reconstruction to be obtained from

data that are intractable to conventional crystallographic

analysis.

7. The resolution limit

The broadening of diffraction peaks due to imperfections of

protein nanocrystals determines the resolution achievable in

the reconstructed image. The resolution limit is defined by the

qmax value corresponding to the largest measured angle for

which the diffraction pattern provides prominent reflections. If

the Bragg peak becomes so broad that its half-width is greater

than �q = D, where D is the distance between the pair of

nearest-neighbour Bragg reflections, and overlaps significantly

with its neighbours, then the interference function ~��ðqÞ
becomes almost constant (Fig. 9). This defines the coherence

length of the partially disordered nanocrystal that is the

boundary between the crystal-type scattering (molecular

clusters are scattering coherently) and ‘gas’-type scattering

(molecular clusters are scattering incoherently). For the
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Figure 8
The projections of the electron density of the photosystem I molecular
cluster, reconstructed with a resolution of 4.1 Å by incorporating models
of the partial coherency: (a) (ab) crystallographic plane, (b) (ac)
crystallographic plane. (c) and (d) models of the photosystem I molecule,
(ab) and (ac) projections, respectively.

Table 3
Refinement statistics.

Ideal Disordered

Resolution range (Å) 243.35–2.96
Number of reflections 25338
Data cutoff, 	(F) none none
R/Rfree† factor (%) 18.8/20.2 >100
Average B value for all atoms (Å2) 6.1 (3) 64.5 (2)

† Represents 5% of the data.

Figure 9
The one-dimensional interference function calculated for the nanocrystal
with structural disordering.



classes of structural imperfection considered here, the coher-

ence length, LC, is defined by Vainshtein (1966),

LC ¼ mmaxd; ð30Þ

where d is the distance between two nearest molecular clusters

and mmax ¼ 1=ð2:5�1=dÞ
2. According to equation (30), LC is

governed by the degree of disorder, �1=d. The ‘gas’-type

scattering for which the ~��ðqÞ function exhibits no maximum

occurs if the degree of disorder is given by �1=d> 0:25

(Vainshtein, 1966).

8. Conclusion

Considering the diffraction pattern of the protein nanocrystal

as a continuous function of the scattering vector, q, rather than

as a discrete set of Bragg reflections, yields a more complete

extraction of structural information from diffraction data in

the structural analysis of partially disordered nanocrystals.

Our approach is particularly suited to crystals obtained by in

vivo crystallization as this intrinsically leads to the formation

of partially disordered crystals (Hempelmann & Marques,

1994; Wolf et al., 1999; Frenkiel-Krispin & Minsky, 2002). The

boundary between the continuous and discrete approaches to

structural analysis of diffraction by protein nanocrystals is

determined primarily by the ratio NS=NV (x1). The conven-

tional approach can be applied if the fraction of unit cells

adjacent to the surface of the crystal does not exceed 10% of

the total number of unit cells, suggesting an effective size limit

of 1 mm for a protein crystal with an average unit-cell para-

meter of 100 Å.

We have shown that structural imperfections, such as

mutual displacement or misalignment of proteins, particularly

at the surface of the nanocrystals, as well as the shape and

dimensions of the nanocrystals, play an important role in the

formation of a diffraction pattern. It has also been shown that

an algorithm that accommodates these structural imperfec-

tions is able to extract information in cases for which existing

conventional methods fail. The analysis proposed here, based

on continuous diffraction patterns, offers a unique solution for

the structure without the need for additional assumptions or

additional data. This may lead to the determination of mole-

cular structures without the need to introduce molecular

replacement strategies which introduce a natural bias in

favour of existing trial structures. Such an approach is in the

direction of truly ab initio structure determination, which may

be made possible by XFEL sources.
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